Skip to contents

This function is a wrapper around MR-MEGA, which uses meta-regression to combine GWAS summart statistics while accounting for study/population-specific components of genetic variation. The method was described in Magi et al. (Human Molecular Genetics 2017; https://doi.org/10.1093/hmg/ddx280), and the package can be obtained from the Estonian Genome Centre (https://genomics.ut.ee/en/tools).

Usage

mr_mega(
  sumstats_files,
  mr_mega_bin,
  marker_col = MARKER,
  chr_col = CHROM,
  pos_col = POS,
  effect_allele_col = EFFECT_ALLELE,
  other_allele_col = OTHER_ALLELE,
  eaf_col = EAF,
  beta_col = BETA,
  se_col = SE,
  p_value_col = P,
  samplesize_col = N,
  n_pcs = 3
)

Arguments

sumstats_files

List of files containing GWAS summary statistics. These files should all contain the same column header.

mr_mega_bin

Path to MR-MEGA binary

marker_col

Column containing unique markers for each variant

chr_col

Column containing the chromosome

pos_col

Column containing the position

effect_allele_col

Column containing the effect allele

other_allele_col

Column containing the non-effect allele

eaf_col

Column containing effect allele frequencies

beta_col

Column containing effect estimates

se_col

Column containing standard errors

p_value_col

Column containing p-value

samplesize_col

Column containing sample size

n_pcs

Number of genetic principal components to include in the meta-regression.

Value

A data.frame containing the GWAS summary statistics from the meta-regression

See also

Other GWAS meta-analysis: metal_config(), metal_run()

Examples

if (FALSE) {
mr_mega(sumstats_files = list("/path/to/sumstats_1.txt.gz", "/path/to/sumstats_2.txt.gz"), mr_mega_bin = "/path/to/MR-MEGA")
}