This function is a wrapper around S-MultiXcan, a tool for identifying genes associate with a trait using GWAS summary statistics. This approach leverages the sharing of eQTLs acorss tissues to improve upon tissue-specific TWAS-methods like S-PrediXcan. This method uses data generated by s_predixcan()
. The S-MultiXcan method was described in Barbeira et al. (PLOS Genetics 2019; https://doi.org/10.1371/journal.pgen.1007889). The MetaXcan tools can be found on Github (https://github.com/hakyimlab/MetaXcan) and PredictDB (https://predictdb.org/).
Usage
s_multixcan(
df,
models_folder,
models_name_filter = ".*db",
models_name_pattern,
snp = SNP,
effect_allele = effect_allele,
other_allele = other_allele,
beta = beta,
eaf = eaf,
chr = chr,
pos = pos,
se = se,
pval = pval,
samplesize = samplesize,
regularization = 0.01,
cutoff_condition_number = 30,
cutoff_eigen_ratio = 0.001,
cutoff_threshold = 0.4,
cutoff_trace_ratio = 0.01,
metaxcan_folder,
metaxcan_filter,
metaxcan_file_name_parse_pattern,
snp_covariance,
metaxcan,
data
)
Arguments
- df
Dataframe containing GWAS summary statistics
- models_folder
Path to folder containing MetaXcan models (eg.
"MetaXcan/data/models/eqtl/mashr/"
)- models_name_filter
Filter used to identify model files (default =
".*\\.db"
)- models_name_pattern
Filter used to extract trait name from the model (default =
"mashr_(.*)\\.db"
)- snp
Column containing rsids
- effect_allele
Column containing effect alleles
- other_allele
Column containing non-effect alleles
- beta
Column containing effect estimates
- eaf
Column containing effect allele frequencies
- chr
Column containing chromosomes
- pos
Column containing positions
- se
Column containing standard errors
- pval
Column containing p-values
- samplesize
Column containing samplesize
- regularization
MetaXcan regularization (default = 0.01)
- cutoff_condition_number
Numer of eigen values to use when truncating SVD components (default = 30)
- cutoff_eigen_ratio
Ratio of eigenvalues to the max eigenvalue, as threshold to use when truncating SVD components. (default = 0.001)
- cutoff_threshold
Threshold of variance eigenvalues when truncating SVD (default = 0.4)
- cutoff_trace_ratio
Ratio of eigenvalues to trace, to use when truncating SVD (default = 0.01)
- metaxcan_folder
Path to folder containing S-PrediXcan result files
- metaxcan_filter
Regular expression to filter results files
- metaxcan_file_name_parse_pattern
Regular expression to get phenotype name and model name from MetaXcan result files. Assumes that a first group will be matched to phenotype name, and the second to model name.
- snp_covariance
Path to file containing S-MultiXcan covariance (eg.
"MetaXcan/data/models/gtex_v8_expression_mashr_snp_smultixcan_covariance.txt.gz"
)- metaxcan
Path to MetaXcan (eg.
"MetaXcan/software"
)- data
Path to MetaXcan data (eg.
"MetaXcan/data"
)
See also
Other TWAS:
s_predixcan()
Other Gene-based testing:
magmar()
,
s_predixcan()
Examples
if (FALSE) {
s_multixcan(df,
models_folder = "MetaXcan/data/models/eqtl/mashr/",
models_name_filter = ".*\\.db",
models_name_pattern = "mashr_(.*)\\.db",
metaxcan_folder = "/path/to/metaxcan_files/",
metaxcan_filter = "GWAS-trait_mashr_(.*)_S-prediXcan.csv",
metaxcan_file_name_parse_pattern = "(.*)_mashr_(.*)_S-prediXcan.csv",
data = "MetaXcan/data",
metaxcan = "MetaXcan/software",
snp_covariance = "MetaXcan/data/models/gtex_v8_expression_mashr_snp_smultixcan_covariance.txt.gz"
)
}