This function is a wrapper around S-PrediXcan, a method of integrating GWAS summary statistics with gene-expression/splicing data to identify genes associated with a trait. The PrediXcan/MetaXcan method is described in Barbeira et al. (Nature Communications 2018; https://doi.org/10.1038/s41467-018-03621-1). The MetaXcan tools can be found on Github (https://github.com/hakyimlab/MetaXcan) and PredictDB (https://predictdb.org/). If S-PrediXcan is run across multiple tissues, the results can be integrated using s_multixcan()
.
Usage
s_predixcan(
df,
snp = SNP,
effect_allele = effect_allele,
other_allele = other_allele,
beta = beta,
eaf = eaf,
chr = chr,
pos = pos,
se = se,
pval = pval,
samplesize = samplesize,
data,
metaxcan,
output,
model_db_path,
model_covariance_path,
trait_name
)
Arguments
- df
Dataframe containing GWAS summary statistics
- snp
Column containing rsid
- effect_allele
Column containing effect allele
- other_allele
Column containing non-effect allele
- beta
Column containing effect size
- eaf
Column containing effect allele frequency
- chr
Column containing chromosome
- pos
Column containing position
- se
Column containing standard error of the effect estimate
- pval
Column containing p-value
- samplesize
Column containing samplesize
- data
Path to MetaXcan data (eg.
"MetaXcan/data"
)- metaxcan
Path to MetaXcan (eg.
"MetaXcan/software"
)- output
Output directory to save S-PrediXcan results
- model_db_path
Path to PrediXcan model database
- model_covariance_path
Path to PrediXcan model covariance
- trait_name
Name of GWAS trait (used to name output files)
See also
Other TWAS:
s_multixcan()
Other Gene-based testing:
magmar()
,
s_multixcan()